
 83 

4. ALGEBRAS AND 

MODULES 
 

§4.1. Group Algebras 
Most useful rings contain a field, and hence have a 

vector space structure as well as a ring structure. An 

algebra over a field F is a ring which is also a vector space 

over F. Examples include the algebra of polynomials over 

a field, and the algebra of n  n matrices over a field. 

 

For the purposes of representation theory the most 

important type of algebra is a group algebra. We start with 

a group, such as S3 = {I, (123), (132), (12), (13), (23)}. 

This has its own multiplication operation. We make it into 

a ring by adding group elements. 

What on earth is (123) + (12)? The answer is (123) 

+ (12). In other words we consider formal sums and 

differences of group elements. These are no longer in the 

group, of course, they are in some enlarged system where, 

for example, if we add 3(23) + (123) to 5(12) − 7(23) we 

get (123) + 5(12) − 4(23). 

But if we want our system to be an algebra, say over 

the complex number field, we need to include such formal 

expressions as 2I − (123) + 
17

3
 (12) − 42.(23), which is 

given here in its simplest form. 

 



 84 

 The group algebra of G = {g1, g2, …, gn} over F is 

the set of all formal expressions of the form: 

1g1 + 2g2 + … + ngn. 

It is denoted by FG. Addition and scalar multiplication 

are defined in the obvious way. Multiplication of two such 

formal expressions is also defined in the usual way, with 

products gi gj being evaluated in the group. One of the gi, 

usually it is g1, is the identity, which we will write as I 

instead of 1 to avoid confusion. Five times the identity 

would be written as 5I instead of the more confusing 51. 

 

The dimension of FG as a vector space over F is 

clearly |G|. 

 

Example 1: ℂg | g3 =1 = {aI + bg + cg2 | a, b, c  ℂ} 
and g  g | g3 =1}. 

In this algebra (I − g)5 = I − 5g + 10g2 − 10g3 + 5g4 − g5 

                                    = I − 5g + 10g2 − 10 I + 5g − g2 
                                                        =  − 9 I + 9g2 

                                    = 9(g2 − I). 

 

 Except where the group is the trivial group, the 

group algebra is not a field as it has divisors of zero – two 

non-zero elements whose product is zero. 

 

Example 2: In ℂS3, if x = (123) − (132) + (13) − (23) then 

x2 = 0. 
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 The centre of an algebra is the set Z(A) of all 

elements of A that commute with every element of A. 

Z(A) is clearly a subalgebra of A but, as we will show, it 

is not in general an ideal of A. 

 

Example 3: Consider the algebra ℂS3. 

Let z = (123) + (132)  Z(CS3). 

Clearly z commutes with both (123) and (132). Moreover: 

z(12) = (123)(12) + (132)(12) = (23) + (13) and 

(12)z = (12)(123) + (12)(132) = (13) + (23) = z(12). 

Similarly z commutes with (13) and (23). So z  Z(ℂS3). 

Similar calculations show that: 

(12) + (13) + (23)  Z(ℂS3). 

 

Theorem 1: If G is a finite group then Z(FG) is the set of 

all linear combinations of the sums of each conjugacy 

class of G. 

Proof: Let  be a conjugacy class and let  be the formal 

sum of its elements. Conjugating  by a group element 

will simply permute the elements of  and hence the terms 

of , which doesn’t change it. So  commutes with all the 

group elements and hence with all the formal linear 

combinations of group elements. 

Conversely, if  1g1 + 2g2 + … + ngn  Z(FG) 

then conjugating it by g  G leaves it unchanged. 

Hence: 

1g
−1g1g + 2g

−1g2g + … ng−1gng 

                                                 = 1g1 + 2g2 + … + ngn. 
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 Since these are formal expressions we may equate 

corresponding coefficients, and so clearly conjugate 

elements have the same coefficient. We may take this out 

as a common factor from all the terms in a given 

conjugacy class and end up with a linear combination of 

the sums of the elements in the respective conjugacy 

classes. 

In fact if the conjugacy classes are 1, 2, … , n 

and if i is the formal sum of the elements of i, then 

{1, 2, … , n} is a basis for Z(FG). ☺ 

Corollary: The dimension of Z(FG) over F is the number 

of conjugacy classes in G. 

 

§4.2. Modules 
 The scalars in a vector space must come from a 

field. But we’d like to have ‘vector spaces’ in which the 

scalars come from a ring. We can do so, provided we call 

them something other than vector spaces, and provided 

we don’t expect all the theory of vector spaces to apply in 

this new environment. 

 One important difference will be the fact that if the 

ring is non-commutative then it’s important, if we have to 

multiply by two scalars in succession, in which order we 

multiply them. The right hand side of the equation ()v 

= (v) has v multiplied first by  and then by  whereas 

it is more natural to have them multiply in the order given, 

reading from left to right. We are in a similar situation to 

what we were with functions, and we solve it the same 

way – we write our scalars on the right. The expression 
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v may look a little strange and unfamiliar but you’ll get 

used to it, especially as we’ll be dropping the convention 

that vectors appear in bold type. 

 Let R be a ring. A (right) R-module is a ‘vector 

space’ over the ring R. Just go through all the vector space 

axioms and write the scalars on the right. The crucial one 

is: 

v() = (v) 

which looks like an associative law. 

 

Examples 2: 

(1) Vector spaces over F are F-modules, where F is a field. 

(2) Abelian groups are ℤ-modules. 

(3) Every ring R is a right R-module. 

 

 Submodules and quotient modules are defined as 

for groups or rings. One important difference is that while 

G/H is only defined when H is a normal subgroup of the 

group, G, and R/I is only defined when I is a 2-sided ideal 

of the ring R, M/N is defined whenever N is a submodule 

of M. 

  

Examples 3: 

(1) For F-modules (vector spaces over F), the submodules 

are the subspaces. 

(2) For ℤ-modules (abelian groups), the submodules are 

the subgroups. 

(3) Considering R as a right R-module, the submodules 

are the right ideals. 
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 If M, N are R-modules the map f:M → N is a 

homomorphism if it is an abelian group homomorphism 

and  (mr)f = (mf)r for all m  M, r  R. Kernels, images 

and isomorphisms are defined as for vector spaces. 

 

 In some ways modules behave just like vector 

spaces. One important difference is that the vector space 

theorem that enables dimension to be well-defined does 

not hold in general. It does, however, for finitely 

generated modules over a division ring (a ring that 

satisfies all the field axioms except, possibly, the 

commutative law for multiplication). 

 Another elementary, but important fact about 

vector spaces is that if v = 0 then v = 0 or  = 0. In 

modules in general we can have non-zero elements, r,  for 

which mr = 0 for many ring elements, not just zero. 

 

The annihilator of a subset X of an R-module M 

is defined to be: 

A(X) = {a  R | xa = 0 for all x  X}. 

 

Example 4: If M = ℝ2, and R is the ring of all 2  2 

matrices over ℝ, then M is an R-module by the usual 

definition of multiplying a row vector by a matrix. 

If X = {(x, 0)} then A(X) is the set of  2  2 matrices of 

the form 






0 a

0 b
 . 
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 Clearly if X  Y then A(X)  A(Y) and it’s easy to 

show that A(X) is always a right ideal of R. If X is a 

submodule we can do even better. 

 

Theorem 2: If N is a submodule of the R-module M then 

A(N) is a 2-sided ideal of R. 

Proof: Checking that it is a left ideal suppose    A(X) 

and r  R. Let n  N. 

Then n(r) = (nr). Now nr  N since N is a submodule, 

and  annihilates all the elements of N. ☺ 

 

 As for groups or rings we define an 

endomorphism to be homomorphism from a module to 

itself. The set of all R-module endomorphisms of M is 

EndR(M), a subring of the ring of all abelian group 

endomorphisms of M, denoted by End(M). 

 

Theorem 3: If M is an R-module, R/A(M) is isomorphic 

to a submodule of End(M). 

Proof: Right multiplication by an element of R is a 

module endomorphism. The function that maps that 

element to the corresponding endomorphism is a ring 

homomorphism, and so the result follows from the First 

Isomorphism Theorem for rings. ☺ 

 

 Note that for every ring R an abelian group M can 

be made into an R-module by simply defining every 

scalar product to be zero, in which case every element of 

M has the whole of R as its annihilator. Such modules are 
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called trivial. That is, the R-module M is trivial if A(M) 

= R. In the same way every abelian group G can be made 

into a ring by defining every product to be zero. Such 

rings are called zero rings. That is, a ring is a zero ring if 

it is a trivial R-module ie R2 = 0. Remember that R2 

doesn’t just contain all the squares – it contains all sums 

of products of elements of R. 

 At the other end of the spectrum we have faithful 

modules. M is faithful if A(M) = 0. If you think that there 

must be some connection between trivial and faithful 

modules and trivial and faithful representations you’re on 

the right track – there is. 

 M is an irreducible module if it is non-trivial and 

0 and M are its only submodules. The main part of the 

definition is the bit about 0 and M being the only 

submodules. The non-trivial condition is just a technical 

restriction that plays a similar role to the condition that 

rules out the number 1 being a prime even though 1 is its 

only (positive) divisor. 

 The next theorem shows that irreducible modules 

can be generated by a single element, and in fact every 

non-zero element is a generator. Notice where that 

technical condition of non-triviality plays a vital role at 

the end of the proof. 

 

Theorem 4: If M is irreducible and 0  m  M then 

M = mR. 

Proof: Suppose M is irreducible and 0  m  M. 

Now mR = {mr | r  R} is a submodule. 
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Then mR = 0 or mR = M. 

Also A = {x | xR = 0} is a submodule. This is a bit like an 

annihilator, but instead of being a subset of R it’s a subset 

of M. Since M is irreducible, A = 0 or A = M. 

 

Suppose mR  M. Then mR = 0 and so m  A. 

But m  0 so A  0. It follows that A = M. 

But that would mean that M is trivial, which the definition 

of irreducibility rules out. So we get a contradiction, and 

hence mR = M. ☺ 

 

 A fundamental theorem is the following, called 

Schur’s Lemma. It will be used later to show that every 

non-zero element of a certain ring of homomorphisms has 

an inverse. 

 

Theorem 5 (SCHUR’S LEMMA): If M, N are 

irreducible R-modules and f:M→N is a module 

homomorphism then f  = 0 or it is an isomorphism (and 

so has an inverse). 

Proof: If f  0 then ker f = M and im f = 0. ☺ 

Corollary: If M is an irreducible R-module then EndR(M) 

is a division ring, that is a ring that satisfies all the axioms 

of a field with the exception of the commutative law for 

multiplication. 
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Theorem 6: If M is an irreducible R-module, where R 

contains the field of complex numbers, and f:M→M is an 

R-module isomorphism, then there exists   ℂ with 

mf = m for all m  M. 

Proof: f is a vector space isomorphism and so has an 

eigenvalue . Because there’s a corresponding 

eigenvector, the kernel of  f − I is a non-zero submodule 

of M so is M. ☺ 

 

§4.3. Representation Modules 
 Representation modules provide an alternative 

perspective on group representations. Every 

representation of a group G over a field F gives rise to a 

corresponding module over the group algebra FG. 

Conversely, every module over FG gives rise to a 

representation. 

 There is in fact a 1-1 correspondence between 

representations of G over F and FG-modules. The ones 

we’re interested in are the representations on finite-

dimensional vector spaces and these correspond to FG-

modules that are finite-dimensional over F. 

 If :G→EndF(V) is a representation of G then V[] 

is the FG-module on V by defining 

v.(xigi) = v.( xi(gi)). 

 

 Conversely, if M is an FG-module then 

[M]:G→EndF(M) is the representation defined by 

m(g.[M]) = mg. 



 93 

Since M[[M]] = M and [V[]] = , there’s a 1-1 

correspondence between representations of G over F and 

FG-modules. 

Properties of the representation translate smoothly 

to the corresponding module, usually using the same 

terminology. 

The representation :G→EndF(V) is irreducible if 

and only if V[] is an irreducible FG-module, in other 

words, if V[] has no subspaces invariant under all g. 

The representation :G→EndF(V) is faithful if and 

only if V[] is a faithful FG-module. 

Representations :G→EndF(U) and :G→EndF(V) 

are equivalent if and only if U[]  V[] as FG-modules. 

 

§4.4. The Wedderburn Structure 

Theorem 
 The Wedderburn Structure Theorem is an 

important classification theorem that shows that if F is an 

algebraically closed field then a nil-semi-simple algebra 

over F, with descending chain condition on right ideals, is 

isomorphic to a direct sum of matrix algebras of the form 

Mn(F). Here Mn(F) denotes the algebra of all n  n 

matrices over F. 

 It doesn’t matter if you don’t know what these 

properties of the algebra or the field are. An important 

special case is the case where the field is ℂ, the field of 

complex numbers, and the algebra is ℂG, the group 

algebra of a finite group. We don’t provide a proof here. 
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Theorem 7 (WEDDERRBURN STRUCTURE 

THEOREM – Special Case): 

Let G be a finite group. Then: 

(1) ℂG  R1  R2  …  Rk for some k where each Ri is 

isomorphic to Mni
(ℂ) the ring of ni × ni matrices over ℂ. 

(2) Every irreducible ℂG-module is isomorphic to a 

minimal right ideal of some Ri, considered as an ℂG-

module. 

(3) Minimal right ideals of the same Ri are isomorphic as 

modules and those corresponding to different Ri are non 

isomorphic. 

Proof: The proof is contained in my Ring Theory Notes. 
 

Corollary: ni
2 = |G|. 

 

Example 5: ℂS3  ℂ  ℂ  M2(ℂ) 

This is because the only solutions to ni
2 = 6 are 

1,1,1,1,1,1 and 1,1,2. 

The first case implies that ℂS3 is commutative which is 

clearly not the case. 

 

Theorem 8: Let G be a finite group. Then the number of 

irreducible representations of G over ℂ is the number of 

conjugacy classes of G. 

Proof:  ℂG  Mn1(ℂ)  ...  Mnk(ℂ) where k is the 

number of irreducible representations by Theorem 7. The 

centre of ℂG is the direct sum of the centres of the direct 

summands and the centre of each summand has 

dimension 1, consisting of the scalar matrices. Hence the 
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centre of ℂG has dimension k. But this is the number of 

conjugacy classes. ☺ 
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